В книге А. Киселя «Кладезь Бездны» убедительно показана и доказана фундаментальная встречаемость и нумерологическая значимость числа «147». Им были показаны и доказаны систематические формы проявления чисел «258» и 369».
После того А. Кисель сформулировал свой «принцип числовой комплиментарности», определяющий эквивалентность указанных выше чисел (1,4,7; 2,5,8; 3,6,9), возникают новые вопросы:
- Почему именно возникают эти, а не иные комбинации цифр в числах (например, 147, а не 471)?
- Не существуют ли некие промежуточные алгоритмы порождения известных и важных числовых рядов?
Цель этих вопросов – поиск своеобразных «кодов самовоспроизводства», ибо, на примере цифросочетания 147 я вижу в первую очередь, проявлениедействия некоего «регулятора этапности» в развитии разнокачественных (а может быть и всех!) процессов.
Если в начале своих исследований я сначала больше всего интересовался загадочными числами «11» и «9», то после А. Киселя я прочувствовал за «числами» 147 и 258 некую всеобщность, некий вселенский механизм бытия, выражаемый ими.
Веское основание к этому дало спектральное представление Первоцифр [1], показанное на Рис.1 (ниже)
Рис. 1
В спектральном представлении совершенно естественно выглядят переходы порождения:
1 + 4 порождает 5
4 + 7 порождает 2
7 + 1 порождает 8
И столь же закономерны другие переходы:
2 + 5 порождает 7
5 + 8 порождает 4
8 + 2 порождает 1
Эти «превращения» лежат в основе открытого А. Киселём «Принципа комплиментарности» (см. рис. 2)
Схема на Рис.2б (ниже) показывает другое отображение этого принципа.
Рис.2
Таким образом, в превращениях 147 в 258 (в любых комбинациях цифр) фактически участвует только первое число – 147…;
258 = 147 + 111, а 369 = 147 + 2*111;
В предыдущих работах [2] были достигнуты интересные результаты при исследовании закономерностей и связей между «монадными числами» (1,4,7; 2,5,8; 3,6,9) и рядами Фибоначчи.
Главным результатом явилась находка. Была найдена и определёна цифровая структура вида «396», которая обладает «врождёнными» свойствами саморепликации (автоклонирования).
Это свойство было всесторонне проверено, после чего указанную цифровую структуру (здесь и далее – «автоклон») автор попытался найти в иных числовых объектах.
В частности, успехом увенчались поиски «автоклона» в золотом ряду Фибоначчи [3].
Дальнейшее развитие этой идеи об «автоклоне» привело в рождению мысли о том, что автоматически самореплицирующийся «автоклон», естественным образом присутствующий в золотом ряду Фибоначчи, должен быть реализован в гипотетическом цифровом «устройстве», в некоем «генераторе» (осцилляторе), который «работает» на цифрах и производит этот самый «автоклон».
В ещё более ранних исследованиях [4] было доказано, что числа способны иметь как пространственные, так и временные свойства, причём, одномоментно и параллельно.
А вследствие этого числа естественным образом выполняют все информационные функции.
Так что, возможность существования гипотетического цифрового (числового) генератора не представлялась очень уж невероятной.
В самом деле, отвлекаясь (пока) от истинных механизмов реализации, при любом анализе таких, например, математических объектов, как числовые ряды, всегда может быть поставлен вопрос о том, а каким, собственно говоря, образом эти ряды … продолжаются?
В рамках обычных представлений никакой проблемы тут не существует. Любой школьный учитель математики с доброй и снисходительной улыбкой объяснит неразумному существу, которое задаёт такие вопросы, что … считают и вычисляют ряды чисел люди, а поэтому сам вопрос – некорректный.
Но, никакой учитель и никакой математик не смогут ответить – почему «неразумная» природа так однозначно и точно реализует свои творения в полном и точном соответствии с алгоритмами золотых сечений.
Только совсем недавно усилиями ….. факты такого сугубо «математического» устроения живых организмов (и их функций) были однозначно доказаны и исследованы. Теперь это – научный факт.
Языки природы и «математики гармонии» оказались одинаковыми…
Но, рассматриваемая здесь проблема вовсе не снята!
Живые организмы прежде всего … самовоспроизводятся, наследуя при этом свои уникальные и родо-видовые качества, и способны к передаче этих качеств своему потомству. И именно на вопрос о том, как это природа делает – ответа, к сожалению, не существует.
Исследования современной генетики нацелены именно на эту проблему и поэтому её так интересуют механизмы передачи и обработки наследственной информации, носителем которой считается ДНК и физико-химические процессы в ней.
Однако, ни физики, ни химики, ни биологи не акцентируют своё особое внимание на числовых алгоритмах исследуемых явлений. До недавнего времени генетика была вообще – вотчиной биогогов. А физиков и химиков интересовали тоже свои, другие, объекты.
Обычная ситуация на арене междисциплинарный научных исследований. Эффективные исследования здесь могут вести лишь те организации, которые смотрят и вкладываются в … завтрашний день. А таких, увы, слишком мало.
Вернёмся к нашей проблеме.
Итак, проблема в там, что нам неизвестен механизм природной саморепликации и генерации определённых свойств в живых объектах. Мы не можем синтезировать (создать) живой организм способный к саморазмножению.
Исходя из всего сказанного выше, встала задача моделирования упомянутого выше гипотететического «механизма» на чисто цифровой основе, методами числонавтики.
В работе [5] была проделана такая работа и создана модель числового мультивибратора Фибоначчи. Такое название она получила вследствие того, что в ней был реализован «механизм» генерации цифрового «автоклона» - 396, который ранее был выделен в строении ряда Фибоначчи.
Удивительные свойства «автоклона» и его естественная встроенность в ряд Фибоначчи, который имеет широкое распространение в живых организмах, в свою очередь, послужили возникновению идеи о том, что, возможно, этот же «автоклон» может встретиться и в натуральном ряде чисел.
Для проверки этой идеи, естественно, в качестве анализируемого объекта был взят натуральный ряд чисел, точнее – цифр.
Так как мы ищем проявление «автоклона» в явлениях самовоспроизводства, то из числонавтики была взята особая форма представления цифр натурального ряда, а именно – ряды саморепликации Первоцифр [6].
В Табл.1(ниже) представлены таблица и график саморепликации [7], которые в числовой своей форме известны, как таблица умножения (таблица Пифагора).
Табл.1
Первое, на что автор обратил внимание, это цифра «5». Примечательность этой цифры состоит в том, что в системах эзотерического знания она – единственная, непарная цифра (из 9-ти Первоцифр), а все остальные цифры соответствуют, попарно, одной из традиционных стихий (см. Рис.1). Земля у нас - всего одна!
Рис.1
Из Табл.1 возьмём столбцы цифр, отражающих ряд саморепликаций для каждой из Первоцифр (выделена в квадрате, в начале каждого столбца).
А теперь попытаемся построить эти столбцы так, чтобы местоположение Первоцифры «5» укладывалось в систему, показанную на Рис.2.
Рис.2
Как можно видеть на Рис.2, столбцы саморепликаций можно располагать таким образом, что становится очевидной определённая система (см. траекторию смены места цифры 5).
А этой системе адекватно соответствует некий код, составленный из «оглавлений» каждого столбца. В нашем случае это код124578 (на Рис.2 он написан прописью).
Далее этот эксперимент был модифицирован следующим образом.
В качестве траектории месторасположения была выбрана наклонная прямая, под которую находили своё место разные цифры, точнее все цифры столбцов Табл.1.
Результаты (пример с цифрой «5») показаны на Рис.3.
Рис.3
На Рис.3 показана диагональ, вдоль которой располагаются все первоцифры «5» всех столбцов саморепликации. Цифры в квадратах, как уже писалось, есть обозначение Первоцифр, которые самореплицируются. А их последовательность – код нашей графико цифровой манипуляции.
Справа от столбцов показан лимб с найденным кодом манипуляции (578124). Таким образом, мы получаем средство визуализации и идентификации наших манипуляций.
Найденная закономерность потребовала изучить другие варианты размещения остальных Первоцифр. Существуют соответствующие рисунки результатов.
Но, нас в первую очередь интересуют т.н. «монадные первоцифры», так как в них, в первую очередь, сокрыты главные тайны любых цифровых загадок.
Ниже на Рис. 4 и Рис.5 показаны данные экспериментов для цифр 1,4,7 и 2,5,8.
Рис.4
Рис.5
Результаты (см. рисунки) указывают на наличие только трёх видов кодов (для 6-ти первоцифр, занятых в эксперименте).
Отличия в том, что коды с похожими лимбами – это траектории с разными направлениями обхода и, соответственно, с зеркальными (друг-другу) кодами.
Например: 784512 и 215487.
Линейное построение столбцов саморепликации и отсутствие других чисел, кроме цифр натурального ряда, подчёркивает тот факт, что мы фактически изучаем натуральный ряд цифр.
Но, в нём, как бы, отсутствуют первоцифры 3,6 и 9, которые имеются в соответствующих саморепликационных столбцах, а цифра «9» - в конце любого столбца.
(По причине отсутствия цифры «5» указанные выше столбцы в наши рисунки не вставлялись).
Теперь наступила очередь анализа цифровых параметров тех кодов, которые мы получили с помощью наших графико-цифровых манипуляций.
На Рис.6 (ниже) показаны данные расчётов для цифровых структур, связанных с монадными Первоцифрами 1,4,7, а на Рис.7 – с Перврцифрами 2,5,8.
Рис.6
Рис.7
Что же мы видим?
А видим мы то, что простое нумерологическое сложение кодов индексов саморепликационных столбцов, взятых в системе монадных цифр (1,4,7 и 2,5,8) порождают … коды АВТОКЛОНОВ !
Проще говоря, найденный ранее в ряду Фибоначчи, автоклон вида «396» (и его зеркальный двойник - «693») теперь найдены в … натуральном ряду цифр!!!
Это означает, что и ряд Фибоначчи, и натуральный ряд действительно порождаются одной и той же цифровой структурой, в основе которой лежит последовательность вида «396».
Но, существуют и специфические отличия!
Во-первых, в случае с натуральным рядом цифр, порождающие комбинации цифр здесь оказались иными, чем в ситуации с рядом Фибоначчи. (см. Рис.6 и 7):
Например: (157 + 248) = 396 или (578 + 124) = 693
Во-вторых, не до конца изучены закономерности непосредственного проявления найденных цифровых структур в самом натуральном ряду.
Вместе с тем, этот вариант формирования «автоклона», вероятнее всего, не является первичным, ибо истинное «зарождение», скорее всего, должно быть связано с Первоцифрами 1,4,7 (и сопряжённой тройкой Первоцифр 2,5,8), как об этом писалось ранее.
Но, оставим пока глубинные выводы и продолжим изучение наших фигур и кодов.
Как уже отмечалось, найденные коды (с монадной основой) оказались симметричными (Рис.8).
Рис.8
Такая зеркальность кодов (и абрисов) навели на мысль о необходимости проверить разницы индикаторных кодов между собой.
На Рис.9 – пример такого расчёта «нумерологической разницы» между кодами подобных друг другу фигур, а также между разными фигурами (кодами):
Рис.9
Здесь можно видеть, что с помощью этого исследования фактически изобретён метод «арифметики абрисов», с помощью которого можно изучать графические формы трансформаций и их взаимодействия.
А в рамках проводимого изучения мы можем видеть, что имеют место взаимообусловленные трансформации исследуемых абрисов между собой.
Новые абрисы не рождаются! Сумма или разница любых двух абрисов (индикаторных кодов саморепликаций) всегда трансформируется в один из трёх, уже найденных. Примеры см. на Рис.9.
Общую картину может дополнить схема на Рис.10, где показаны разницы основных фигур (кодов), порождающие какую-либо третью фигуру.
Например, на Рис.10 показана ситуация с вычитанием абрисов (кодов) С2 – С1 = А1.
Операция «нумерологического вычитания» символически показана в виже двух встечных стрелок на «линии вычитания» , а результат – линиями из вычитаемых кодов, которые сходятся на другом, результирующем коде (А1).
Рис.10
Нет никаких сложностей в установлении правил «геометрической арифметики» для любых других пар и троек числел-кодов.
Общая закономерность остальных построений совершенно очевидна: это «Правило вписанных в 6-ти угольник одинаковых треугольников». Всего 6 треугольников.
Дальнейшее изучение рассматривало все 12 возможных цифровых вариантов порождения «автоклона»:
Табл.2
Таких вариантов оказалось 6 (шесть). И они показаны на Рис.11 в виде формул и лимбов с абрисами автоклонов «396» и «693».
Рис.11
Сопоставим этот автоклон, обнаруженный в натуральном ряду, с автоклоном, который был описан в работе [5] и обнаружен в ряду Фибоначчи.
Рис.12
Из сопоставления иллюстраций к этой статье и статьи [5,8] нетрудно увидеть сходство абрисов «автоклонов», а особенно при сопоставоении с рисунком Рис.13, где автоклон ряда Фибоначчи тоже отображён на стандартном лимбе-9, хотя и в другой оцифровке (ниже).
Рис.13
Вместе с тем обнаружены ещё две новые формы, тоже порождающие «автоклон», которых в ряду Фибоначчи не было. Они показаны на Рис.14.
Рис.14
На данный момент времени природа и особенности порождения этих двух новых вариантов порождения «автоклона» изучаются…
Список литературы на сайте Числонавтика:
[1] Спектры чисел и тайна Седмицы
[2] «Числовая голография Монады (ч.1, 2, 3, 4)»
[3] Два управляющих кода ряда Фибоначчи
[4] Золотой самореплицирующийся код управления
[5] «Закон сохранения смысла»
[6] Числовой мультивибратор Фибоначчи
[7] Правда о саморепликации Первоцифр
[8] Алгоритм порождения натурального ряда
Продолжение следует
Москва, 1 февраля - 22 июня 2008 г., депонированно
После того А. Кисель сформулировал свой «принцип числовой комплиментарности», определяющий эквивалентность указанных выше чисел (1,4,7; 2,5,8; 3,6,9), возникают новые вопросы:
- Почему именно возникают эти, а не иные комбинации цифр в числах (например, 147, а не 471)?
- Не существуют ли некие промежуточные алгоритмы порождения известных и важных числовых рядов?
Цель этих вопросов – поиск своеобразных «кодов самовоспроизводства», ибо, на примере цифросочетания 147 я вижу в первую очередь, проявлениедействия некоего «регулятора этапности» в развитии разнокачественных (а может быть и всех!) процессов.
Если в начале своих исследований я сначала больше всего интересовался загадочными числами «11» и «9», то после А. Киселя я прочувствовал за «числами» 147 и 258 некую всеобщность, некий вселенский механизм бытия, выражаемый ими.
Веское основание к этому дало спектральное представление Первоцифр [1], показанное на Рис.1 (ниже)
Рис. 1
В спектральном представлении совершенно естественно выглядят переходы порождения:
1 + 4 порождает 5
4 + 7 порождает 2
7 + 1 порождает 8
И столь же закономерны другие переходы:
2 + 5 порождает 7
5 + 8 порождает 4
8 + 2 порождает 1
Эти «превращения» лежат в основе открытого А. Киселём «Принципа комплиментарности» (см. рис. 2)
Схема на Рис.2б (ниже) показывает другое отображение этого принципа.
Рис.2
Таким образом, в превращениях 147 в 258 (в любых комбинациях цифр) фактически участвует только первое число – 147…;
258 = 147 + 111, а 369 = 147 + 2*111;
В предыдущих работах [2] были достигнуты интересные результаты при исследовании закономерностей и связей между «монадными числами» (1,4,7; 2,5,8; 3,6,9) и рядами Фибоначчи.
Главным результатом явилась находка. Была найдена и определёна цифровая структура вида «396», которая обладает «врождёнными» свойствами саморепликации (автоклонирования).
Это свойство было всесторонне проверено, после чего указанную цифровую структуру (здесь и далее – «автоклон») автор попытался найти в иных числовых объектах.
В частности, успехом увенчались поиски «автоклона» в золотом ряду Фибоначчи [3].
Дальнейшее развитие этой идеи об «автоклоне» привело в рождению мысли о том, что автоматически самореплицирующийся «автоклон», естественным образом присутствующий в золотом ряду Фибоначчи, должен быть реализован в гипотетическом цифровом «устройстве», в некоем «генераторе» (осцилляторе), который «работает» на цифрах и производит этот самый «автоклон».
В ещё более ранних исследованиях [4] было доказано, что числа способны иметь как пространственные, так и временные свойства, причём, одномоментно и параллельно.
А вследствие этого числа естественным образом выполняют все информационные функции.
Так что, возможность существования гипотетического цифрового (числового) генератора не представлялась очень уж невероятной.
В самом деле, отвлекаясь (пока) от истинных механизмов реализации, при любом анализе таких, например, математических объектов, как числовые ряды, всегда может быть поставлен вопрос о том, а каким, собственно говоря, образом эти ряды … продолжаются?
В рамках обычных представлений никакой проблемы тут не существует. Любой школьный учитель математики с доброй и снисходительной улыбкой объяснит неразумному существу, которое задаёт такие вопросы, что … считают и вычисляют ряды чисел люди, а поэтому сам вопрос – некорректный.
Но, никакой учитель и никакой математик не смогут ответить – почему «неразумная» природа так однозначно и точно реализует свои творения в полном и точном соответствии с алгоритмами золотых сечений.
Только совсем недавно усилиями ….. факты такого сугубо «математического» устроения живых организмов (и их функций) были однозначно доказаны и исследованы. Теперь это – научный факт.
Языки природы и «математики гармонии» оказались одинаковыми…
Но, рассматриваемая здесь проблема вовсе не снята!
Живые организмы прежде всего … самовоспроизводятся, наследуя при этом свои уникальные и родо-видовые качества, и способны к передаче этих качеств своему потомству. И именно на вопрос о том, как это природа делает – ответа, к сожалению, не существует.
Исследования современной генетики нацелены именно на эту проблему и поэтому её так интересуют механизмы передачи и обработки наследственной информации, носителем которой считается ДНК и физико-химические процессы в ней.
Однако, ни физики, ни химики, ни биологи не акцентируют своё особое внимание на числовых алгоритмах исследуемых явлений. До недавнего времени генетика была вообще – вотчиной биогогов. А физиков и химиков интересовали тоже свои, другие, объекты.
Обычная ситуация на арене междисциплинарный научных исследований. Эффективные исследования здесь могут вести лишь те организации, которые смотрят и вкладываются в … завтрашний день. А таких, увы, слишком мало.
Вернёмся к нашей проблеме.
Итак, проблема в там, что нам неизвестен механизм природной саморепликации и генерации определённых свойств в живых объектах. Мы не можем синтезировать (создать) живой организм способный к саморазмножению.
Исходя из всего сказанного выше, встала задача моделирования упомянутого выше гипотететического «механизма» на чисто цифровой основе, методами числонавтики.
В работе [5] была проделана такая работа и создана модель числового мультивибратора Фибоначчи. Такое название она получила вследствие того, что в ней был реализован «механизм» генерации цифрового «автоклона» - 396, который ранее был выделен в строении ряда Фибоначчи.
Удивительные свойства «автоклона» и его естественная встроенность в ряд Фибоначчи, который имеет широкое распространение в живых организмах, в свою очередь, послужили возникновению идеи о том, что, возможно, этот же «автоклон» может встретиться и в натуральном ряде чисел.
Для проверки этой идеи, естественно, в качестве анализируемого объекта был взят натуральный ряд чисел, точнее – цифр.
Так как мы ищем проявление «автоклона» в явлениях самовоспроизводства, то из числонавтики была взята особая форма представления цифр натурального ряда, а именно – ряды саморепликации Первоцифр [6].
В Табл.1(ниже) представлены таблица и график саморепликации [7], которые в числовой своей форме известны, как таблица умножения (таблица Пифагора).
Табл.1
Первое, на что автор обратил внимание, это цифра «5». Примечательность этой цифры состоит в том, что в системах эзотерического знания она – единственная, непарная цифра (из 9-ти Первоцифр), а все остальные цифры соответствуют, попарно, одной из традиционных стихий (см. Рис.1). Земля у нас - всего одна!
Рис.1
Из Табл.1 возьмём столбцы цифр, отражающих ряд саморепликаций для каждой из Первоцифр (выделена в квадрате, в начале каждого столбца).
А теперь попытаемся построить эти столбцы так, чтобы местоположение Первоцифры «5» укладывалось в систему, показанную на Рис.2.
Рис.2
Как можно видеть на Рис.2, столбцы саморепликаций можно располагать таким образом, что становится очевидной определённая система (см. траекторию смены места цифры 5).
А этой системе адекватно соответствует некий код, составленный из «оглавлений» каждого столбца. В нашем случае это код124578 (на Рис.2 он написан прописью).
Далее этот эксперимент был модифицирован следующим образом.
В качестве траектории месторасположения была выбрана наклонная прямая, под которую находили своё место разные цифры, точнее все цифры столбцов Табл.1.
Результаты (пример с цифрой «5») показаны на Рис.3.
Рис.3
На Рис.3 показана диагональ, вдоль которой располагаются все первоцифры «5» всех столбцов саморепликации. Цифры в квадратах, как уже писалось, есть обозначение Первоцифр, которые самореплицируются. А их последовательность – код нашей графико цифровой манипуляции.
Справа от столбцов показан лимб с найденным кодом манипуляции (578124). Таким образом, мы получаем средство визуализации и идентификации наших манипуляций.
Найденная закономерность потребовала изучить другие варианты размещения остальных Первоцифр. Существуют соответствующие рисунки результатов.
Но, нас в первую очередь интересуют т.н. «монадные первоцифры», так как в них, в первую очередь, сокрыты главные тайны любых цифровых загадок.
Ниже на Рис. 4 и Рис.5 показаны данные экспериментов для цифр 1,4,7 и 2,5,8.
Рис.4
Рис.5
Результаты (см. рисунки) указывают на наличие только трёх видов кодов (для 6-ти первоцифр, занятых в эксперименте).
Отличия в том, что коды с похожими лимбами – это траектории с разными направлениями обхода и, соответственно, с зеркальными (друг-другу) кодами.
Например: 784512 и 215487.
Линейное построение столбцов саморепликации и отсутствие других чисел, кроме цифр натурального ряда, подчёркивает тот факт, что мы фактически изучаем натуральный ряд цифр.
Но, в нём, как бы, отсутствуют первоцифры 3,6 и 9, которые имеются в соответствующих саморепликационных столбцах, а цифра «9» - в конце любого столбца.
(По причине отсутствия цифры «5» указанные выше столбцы в наши рисунки не вставлялись).
Теперь наступила очередь анализа цифровых параметров тех кодов, которые мы получили с помощью наших графико-цифровых манипуляций.
На Рис.6 (ниже) показаны данные расчётов для цифровых структур, связанных с монадными Первоцифрами 1,4,7, а на Рис.7 – с Перврцифрами 2,5,8.
Рис.6
Рис.7
Что же мы видим?
А видим мы то, что простое нумерологическое сложение кодов индексов саморепликационных столбцов, взятых в системе монадных цифр (1,4,7 и 2,5,8) порождают … коды АВТОКЛОНОВ !
Проще говоря, найденный ранее в ряду Фибоначчи, автоклон вида «396» (и его зеркальный двойник - «693») теперь найдены в … натуральном ряду цифр!!!
Это означает, что и ряд Фибоначчи, и натуральный ряд действительно порождаются одной и той же цифровой структурой, в основе которой лежит последовательность вида «396».
Но, существуют и специфические отличия!
Во-первых, в случае с натуральным рядом цифр, порождающие комбинации цифр здесь оказались иными, чем в ситуации с рядом Фибоначчи. (см. Рис.6 и 7):
Например: (157 + 248) = 396 или (578 + 124) = 693
Во-вторых, не до конца изучены закономерности непосредственного проявления найденных цифровых структур в самом натуральном ряду.
Вместе с тем, этот вариант формирования «автоклона», вероятнее всего, не является первичным, ибо истинное «зарождение», скорее всего, должно быть связано с Первоцифрами 1,4,7 (и сопряжённой тройкой Первоцифр 2,5,8), как об этом писалось ранее.
Но, оставим пока глубинные выводы и продолжим изучение наших фигур и кодов.
Как уже отмечалось, найденные коды (с монадной основой) оказались симметричными (Рис.8).
Рис.8
Такая зеркальность кодов (и абрисов) навели на мысль о необходимости проверить разницы индикаторных кодов между собой.
На Рис.9 – пример такого расчёта «нумерологической разницы» между кодами подобных друг другу фигур, а также между разными фигурами (кодами):
Рис.9
Здесь можно видеть, что с помощью этого исследования фактически изобретён метод «арифметики абрисов», с помощью которого можно изучать графические формы трансформаций и их взаимодействия.
А в рамках проводимого изучения мы можем видеть, что имеют место взаимообусловленные трансформации исследуемых абрисов между собой.
Новые абрисы не рождаются! Сумма или разница любых двух абрисов (индикаторных кодов саморепликаций) всегда трансформируется в один из трёх, уже найденных. Примеры см. на Рис.9.
Общую картину может дополнить схема на Рис.10, где показаны разницы основных фигур (кодов), порождающие какую-либо третью фигуру.
Например, на Рис.10 показана ситуация с вычитанием абрисов (кодов) С2 – С1 = А1.
Операция «нумерологического вычитания» символически показана в виже двух встечных стрелок на «линии вычитания» , а результат – линиями из вычитаемых кодов, которые сходятся на другом, результирующем коде (А1).
Рис.10
Нет никаких сложностей в установлении правил «геометрической арифметики» для любых других пар и троек числел-кодов.
Общая закономерность остальных построений совершенно очевидна: это «Правило вписанных в 6-ти угольник одинаковых треугольников». Всего 6 треугольников.
Дальнейшее изучение рассматривало все 12 возможных цифровых вариантов порождения «автоклона»:
Табл.2
Таких вариантов оказалось 6 (шесть). И они показаны на Рис.11 в виде формул и лимбов с абрисами автоклонов «396» и «693».
Рис.11
Сопоставим этот автоклон, обнаруженный в натуральном ряду, с автоклоном, который был описан в работе [5] и обнаружен в ряду Фибоначчи.
Рис.12
Из сопоставления иллюстраций к этой статье и статьи [5,8] нетрудно увидеть сходство абрисов «автоклонов», а особенно при сопоставоении с рисунком Рис.13, где автоклон ряда Фибоначчи тоже отображён на стандартном лимбе-9, хотя и в другой оцифровке (ниже).
Рис.13
Вместе с тем обнаружены ещё две новые формы, тоже порождающие «автоклон», которых в ряду Фибоначчи не было. Они показаны на Рис.14.
Рис.14
На данный момент времени природа и особенности порождения этих двух новых вариантов порождения «автоклона» изучаются…
Список литературы на сайте Числонавтика:
[1] Спектры чисел и тайна Седмицы
[2] «Числовая голография Монады (ч.1, 2, 3, 4)»
[3] Два управляющих кода ряда Фибоначчи
[4] Золотой самореплицирующийся код управления
[5] «Закон сохранения смысла»
[6] Числовой мультивибратор Фибоначчи
[7] Правда о саморепликации Первоцифр
[8] Алгоритм порождения натурального ряда
Продолжение следует
Москва, 1 февраля - 22 июня 2008 г., депонированно
Обсуждения Автоклон натурального ряда