Профессор Манос Тенцерис и его коллеги из Технологического института Джорджии (США) разработали эффективную технологию улавливания излишков энергии, высвобождающейся в процессе работы теле- и радиоприёмников, мобильных устройств и различных систем связи.
Эксперименты с устройствами, способными изымать часть электромагнитной энергии в телевизионном диапазоне и преобразовывать её в постоянный ток, показали, что их выходная мощность составляет несколько сотен микроватт. Если научить такую систему научить работать в более широком диапазоне частот, ее мощность достигнет 1 милливатта и более, чего уже достаточно для питания миниатюрной электроники.
Американские ученые объединили «сборщика» энергии с ионистором (суперконденсатором) для её хранения, добавив цикличность действия. В итоге мощность прибора возросла до 50 милливатт.
Одним из основных преимуществ устройства является простота и дешевизна его изготовления: прибор печатается струйным методом на 3D-принтере, а материалом служит бумага или гибкие полимеры. Другая значимая особенность — работа в ультрашироком диапазоне, от 100 МГц до 60 ГГц. В эту область частот входят самые разнообразные коммуникационные средства, от FM-радио до радаров.
Исследователи уже испытали технологию на температурном сенсоре, который работал от энергии телевизионной станции, располагавшейся в полукилометре. Теперь они готовят эксперимент, в котором планируется активировать микроконтроллер, просто подняв его над головой.
Устройства, которые находят энергию практически повсеместно, могут использоваться в аэропортах для питания датчиков взрывчатых и опасных веществ, в радиочастотной идентификации или, например, в простых системах контроля жизнедеятельности человека. По словам профессора Тенцериса, они способны работать не только сами по себе, но и в тандеме с солнечной батареей или использоваться в качестве экстренного источника питания.
Презентация разработки состоялась 6 июля на проходящем в Вашингтоне симпозиуме по антеннам и системам передачи сигнала.
Американские ученые объединили «сборщика» энергии с ионистором (суперконденсатором) для её хранения, добавив цикличность действия. В итоге мощность прибора возросла до 50 милливатт.
Одним из основных преимуществ устройства является простота и дешевизна его изготовления: прибор печатается струйным методом на 3D-принтере, а материалом служит бумага или гибкие полимеры. Другая значимая особенность — работа в ультрашироком диапазоне, от 100 МГц до 60 ГГц. В эту область частот входят самые разнообразные коммуникационные средства, от FM-радио до радаров.
Исследователи уже испытали технологию на температурном сенсоре, который работал от энергии телевизионной станции, располагавшейся в полукилометре. Теперь они готовят эксперимент, в котором планируется активировать микроконтроллер, просто подняв его над головой.
Устройства, которые находят энергию практически повсеместно, могут использоваться в аэропортах для питания датчиков взрывчатых и опасных веществ, в радиочастотной идентификации или, например, в простых системах контроля жизнедеятельности человека. По словам профессора Тенцериса, они способны работать не только сами по себе, но и в тандеме с солнечной батареей или использоваться в качестве экстренного источника питания.
Презентация разработки состоялась 6 июля на проходящем в Вашингтоне симпозиуме по антеннам и системам передачи сигнала.
Обсуждения Представлена технология для получения энергии из воздуха