О неслучайности случайности

Начну тему с такой весьма полезной для практики «штуки» - псевдослучайных чисел.

Последовательность неслучайных чисел называется псевдослучайной, если она обладает всеми свойствами случайной последовательности. Последовательность неслучайных чисел называется квазислучайной, если её можно использовать в методах Монте-Карло вместо случайной. При этом метод может работать лучше, чем со случайной последовательностью.

Немного отвлекусь от основной темы и покажу маленький фрагмент вводной лекции по теории чисел. Лектор, хоть и классный профессионал, но и юмора ему не занимать.

«…В начале семидесятых годов нашего двадцатого века американское космическое агентство NASA, получив от Конгресса США несколько миллиардов долларов, решило осуществить запуск исследовательского спутника на Юпитер. Спутник склепали, напичкали дорогостоящей аппаратурой, назвали "Пионер" (лектору в этом месте рекомендуется характерный жест правой рукой наискосок об лоб), и запустили вверх. Для успешного управления дальнейшим полетом увороченного агрегата, ежику понятно, необходимо было постоянно перерасчитывать его траекторию, корректируя ее от случайных возмущений и целя в Юпитер, который, между прочим, хоть и большой, но летает от нас на расстоянии более 100 миллионов километров, поэтому попасть в него ужасно трудно.

Знатоки знают, что для расчета подобных траекторий нужно решать систему дифференциальных уравнений, которую не то что решать, а даже и писать-то не хочется, настолько она сложна и огромна. Но Пионер-то уже летит, как фанера над Парижем, а Конгресс внимательно следит за расходом средств налогоплательщиков, поэтому специалисты NASA вынуждены считать эти чертовы многомерные интегралы, причем в режиме реального времени. "В режиме реального времени" – это означает, что интеграл надо успеть посчитать до того, как спутник улетит вместо Юпитера в деревню Пропадайлово.

Знатоки опять знают, что единственный известный сегодня быстрый способ вычисления таких интегралов с использованием ЭВМ — это метод Монте-Карло (а это такой город, в отличие от Бойля-Мариотта). Далее буду краток. Монте-Карло нужно многократное случайное бросание точки в многомерную область. Электронная машина не умеет генерировать случайные числа, так как она работает по программе, написанной заранее на языке FORTRAN (помните, был такой). FORTRAN разработали специально для запуска пионеров и вставили в него датчик (от слова "давать") случайных чисел RND(n), который, работая по некоторой наспех созданной схеме, выдавал последовательность "квазислучайных" чисел из отрезка [0; 1], равномерно на нем распределенную. Все было здорово.

Беда началась тогда, когда эти "квазислучайные" числа начали объединять в пары, тройки, и т. д., чтобы получить координаты "случайной" точки многомерной области. RND(n) оказался составленным настолько неудачно, что 60% "случайных" точек из единичного квадрата на плоскости (всего-то двухмерная область !) попадали в его нижнюю половину (а это даже в боксе — неэтично)! Монте-Карло не сработал, спутник промазал мимо Юпитера всего на каких-то 20 миллионов километров, и несколько миллиардов долларов вылетели в трубу.

Мораль: когда теоретик-числовик из заоблачных высот на несколько минут спускается на землю для сообщения процедуры получения случайных чисел с помощью эффектной цепочки делений и взятия остатков, убейте его сразу — дешевле будет. Народнохозяйственное применение теории чисел здесь очевидно: она должна выдать такую процедуру получения случайных чисел, чтобы мы могли спокойно и спутники запускать, и землю пахать, и напильники коллекционировать…»

Приведу один из корректных методов вычисления квазислучайных чисел. Это метод серединных произведений:

Число R0 умножается на R1, из полученного результата R2 извлекается середина R2* (это очередное случайное число) и умножается на R1. По этой схеме вычисляются все последующие случайные числа.

А теперь расскажу немного об исследованиях мало кому известного чудака, математика по образованию, который занимается созданием т. н. «виртуальной космологии». Это Исаев Александр Васильевич. Он специалист в теории чисел. Вот вам небольшой отрывочек из его «Виртуальной космологии».

«Рассмотрим натуральное число N = 6.746.328.388.800, у которого количество целых делителей равно Т = 10080. Параметр Т – это так называемый тип числа N, причем понятие «тип числа» – одно из главных понятий в виртуальной космологии (где я придумал немало новых терминов, иначе, просто невозможно популярно, доступно излагать «математические» тексты). Взятое нами число N – особое, это первое число (в бесконечном ряду всех натуральных чисел 0, 1, 2, 3, 4, 5, 6, 7, …), у которого тип Т впервые «дорос» до конкретного указанного значения Т = 10080, то есть у всех предыдущих натуральных чисел типы Т были меньше. Поэтому, чтобы не забыть об указанной особенности выбранного нами числа N, мы назовем его мощным числом. Очевидно, что мощных чисел немало в начале натурального ряда, однако потом, при мысленном движении вправо от единицы, мощные числа появляются все реже и реже. Для справок приведу первый десяток мощных чисел N = 2, 6, 12, 24, 48, 60, 120, 180, 240 и, соответственно, их типов Т = 2, 4, 6, 8, 10, 12, 16, 18, 20 (сами проверьте меня на компьютере).

Однако вернемся к нашему (достаточно большому!) мощному числу N, и посмотрим на все его делители (Д), выписав их строго по возрастанию:

1,…, 10, …, 100, …, 1001, …, 10010, …, 100035, …, 1000350, …, 10021284, …, 100105775, …, 1002128400, …, 10039179150, …, 102217096800, …, 1124388064800, …, 6746328388800.

Я специально привел (выборочно) только такие делители, каждый из которых почти на порядок (почти в 10 раз) больше предыдущего делителя. При этом порядковые номера (k = 1, 2, 3, 4, 5, …) указанных выше делителей (в общем ряду всех делителей взятого нами числа N) следующие: 1, 10, 76, 330, 1002, 2298, 4173, 6262, 8051, 9235, 9818, 10026, 10075, 10080.

Надеюсь, что теперь читатель более охотно поверит мне, что работать с таким набором делителей крайне неудобно, ведь наибольший делитель на 13 (!) порядков больше первого делителя (единицы). Поэтому большинство (малых и средних) делителей мы просто… не увидим, например, на обычном (линейном) графике Д = f(k), где каждый делитель Д – это некая (вообще говоря, неизвестная нам) функция f от его порядкового номера k. Замечу, что такой график пытливый читатель сам может построить (по приведенным выше цифрам), скажем, в общедоступной программе Excel. Кстати говоря, почти вся виртуальная космология легко «укладывается» в рамки нехитрой программы Excel (мою теорию очень легко проверить!).

А теперь посмотрим не на сами делители (Д) нашего мощного числа N, а на логарифмы его делителей, то есть мы прологарифмируем каждый делитель: ln(Д). При этом мы получим следующий ряд чисел:

0,000; …; 2,303; …; 4,605; …; 6,909; …; 9,211; …; 11,513; …; 13,816; …;

16,120; …; 18,422; …; 20,725; …; 23,030; …; 25,350; …; 27,748; …; 29,540.

Как видим, логарифмы всех делителей оказались в интервале значений от 1 до 30, что дает нам возможность построить вполне удобный для работы график: ln(Д) = f(k) [по горизонтальной оси графика – линейная шкала, а по вертикальной оси графика – логарифмическая шкала]. Таким образом, исследовать (на компьютере) все делители Д больших мощных чисел N очень удобно именно в логарифмической шкале, то есть удобно работать с величинами ln(Д), а «взять логарифм» (ln) любого числа (кроме нуля!) – компьютеру не проблема (это стандартная функция, «зашитая» в память любого компьютера, калькулятора). Вот почему далее мы будем работать только с логарифмами делителей – ln(Д) (т.е. работаем в логарифмической шкале).

Мы рассмотрим как логарифмы ln(Д) всех делителей (напомню, что их количество равно Т = 10080) расположились (распределились) по следующим интервалам (равной длины, всего мы «нарезали» 31 интервал, а, строго говоря, конечно, это – полуинтервалы):

[0; 1); [1; 2); [2; 3); [3; 4); [4; 5); [5; 6); [6; 7); …, [29; 30); [30; 31).

Каждому из этих интервалов мы присвоим своё «имя», обозначив его символом m, а численно этот аргумент (ниже станет ясно, что я вправе его так называть) будет равен середине соответствующего интервала, то есть мы получим такой ряд значений:

m = 0,5; 1,5; 2,5; 3,5; 4,5; …; 29,5; 30,5.
В каждый из указанных интервалов попадает (соответственно) такое количество делителей Д, [а, точнее говоря, величин ln(Д), всего 31 число]:

1, 1, 5, 13, 27, 51, 94, 154, 234, 339, 453, 579, 699, 809, 880, 912, 903, 850,

760, 646, 525, 397, 285, 196, 124, 72, 39, 20, 8, 3, 1 (в сумме – 10080 штук значений).

Как мы видим самым «густонаселенным» оказался интервал с «именем» m = 15,5, у которого больше всего делителей – 912 штук. Таким образом, вероятность (Р) того, что наугад взятое натуральное число из отрезка [1; N] окажется делителем числа N и при этом «попадет» именно в его самый «густонаселенный» интервал, очевидно, будет равна следующему: Р = 912/Т = 912/10080 = 0,0905. Полученное числовое значение (0,0905) вероятности Р = 0,0905 надо понимать в том смысле, что если мы в каждом опыте 10000 раз возьмем число Х (случайным образом, из диапазона от 1 до числа N), то в среднем (по всем опытам) в 905 случаях (из 10000) взятое число Х окажется делителем N и попадет именно в его самый «густонаселенный» интервал. И чем больше таких опытов (по 10000 случайных чисел Х в каждом) мы проделаем – тем «надежнее» мы получим число 905 (как следствие того, что факта, что вероятность равна Р = 0,0905).

Аналогичным образом мы можем получить (подсчитать) вероятности Р для каждого указанного выше интервала (для каждого m):

при m = 0,5 получим Р = 1/10080 = 0,0001;

при m = 1,5 получим Р = 1/10080 = 0,0001;
при m = 2,5 получим Р = 5/10080 = 0,0005;
при m = 3,5 получим Р = 13/10080 = 0,0013;
……………………………………………….
при m = 15,5 получим Р = 912/10080 = 0,0905;
………………………………………………
при m = 27,5 получим Р = 20/10080 = 0,0020;
при m = 28,5 получим Р = 8/10080 = 0,0008;
при m = 29,5 получим Р = 3/10080 = 0,0003;
при m = 30,5 получим Р = 1/10080 = 0,0001.
Найденные нами вероятности Р на графике P = f(m) (при значениях аргумента m = 0,5; 1,5; 2,5; …; 29,5) образуют характерный «колокол» (Гаусса) нормального распределения (см. в Википедии) дискретной случайной величины при следующих условиях:

– математическое ожидание M = 14,7700 (этот параметр характеризует, где именно расположена вершина «колокола»: при меньших или больших значениях аргумента m);

– дисперсия D = 18,3012 (этот параметр характеризует «рисунок» самого «колокола»: насколько крутые или пологие у него боковые скаты; эти скаты всегда симметричные).

Более того, все (достаточно большие) мощные числа N и похожие на них натуральные числа Х (коих – бесконечно много!) также приводят нас к нормальным распределениям! Разумеется, что у них будут свои параметры: матожидание и дисперсия. И такое положение вещей из виртуального мира чисел (обилие указанных нормальных распределений) – очень напоминает нам картину реального мироздания, где нормальное распределение играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений в природе чаще всего встречается именно нормальное распределение – отсюда и произошло его название (нормальное). Образно говоря, мирозданием правит Его Величество Случай (мы живем в мире, построенном на вероятности) – именно это порождает нормальные распределения в природе! И вся пикантность ситуации в том, что в мире чисел… нет места ни малейшей случайности, поскольку распределение делителей у любого натурального числа – это строго детерминированный процесс. В основе него лежит элементарный алгоритм (так называемой Пирамиды делителей из моей любой книги, см. в конце статьи), где все делители всех чисел словно «забетонированы» раз и навсегда, но при этом лучше всего их описывает именно… нормальные распределения – «венец» игры Случая!».

Читать работы Александра Васильевича, несмотря на их доступность и популярность, все-таки несколько трудновато. Во-первых: это все-таки достаточный объем материала. Во-вторых: это предполагает не просто чтиво, а попытку хоть немного поработать самому над теми цифрами, которыми он оперирует. Но те выводы, которые следуют из его конкретных рассмотрений, должны быть совершенно парадоксальны для традиционного философа-материалиста. Копаясь в простых числах и изучая их свойства он показывает, как из этих свойств проистекают наиболее важные – фундаментальные, физические и космологические константы. Они почему-то оказываются «забетонированными» в свойствах простых чисел!
×

Обсуждения О неслучайности случайности

  • Повторенье-мать ученья,
    Математики твердят,
    Числовые песнопенья,
    Им там дружно повторЯт.
     
  • Хорошо, когда осталась
    В теле хоть какая прыть.
    Ну, а не сложилось малость -
    Можно ведь и повторить.
     
  • Фото О неслучайности случайности
    Я в математике профан,
    Но за столом прыткий,
    Любому фору в пьянке дам,
    Пьянею с первой же попытки.
     
  • "матемАтаки"

    Пойду на формулы в атаку
    И интегралов нарублю,
    Не утонуть чтоб напрочь в браке
    И плыть расчётов кораблю.
    Успех отмечу я портвейном,
    Наполню им бутылку Клейна.
     
  • Николай! Очередной раз убедили, что Вы гений математаки и арифметики.
     
  • А я разобрался без бутылки, правда, только с математической частью.
    К числу от чудака А.В.Исаева
    6.746.328.388.800 с 10080 делителями
    могу привести свои числа:
    9.316.358.251.200 с 10752 делителями и
    13.492.656.777.600 с 11520 делителями.

    А вот философские выводы остались мне непонятны. Один столь сильно изнасилованный в статье пример ничего не подтверждает, поскольку на него можно привести неограниченное количество примеров простых чисел, где по методике Исаева нормальным распределением и не пахнет.
    Впрочем, я не против нормального распределения, про которое вполне можно было рассказать короче и без привлечения непомерных расчетов Исаева.
     
  • Картинки О неслучайности случайности
    Прочитал статью по диагонали методом скорочтения и на подсознательном уровне понял, что без бутылки не разобраться.
     
  • Не согласитесь ли в том, что в этом мире ничего случайного не бывает? В любом случае нужно найти источник случайных событий и понять, почему он работает.
     

По теме О неслучайности случайности

Случайности в природе

Еще Эйнштейн утверждал, что в природе нет ничего случайного, а если нам что-то...
Журнал

Теория случайности

Ученые из Гарвардского университета Фредерик Мостеллер и Перси Диаконис...
Журнал

Случайности или ангелы-хранители

Почти вся наша жизнь состоит из случайностей, но мало кто на них обращает...
Магия

Неслучайный случай

[ Этот случай "из практики" (я его так называю, поскольку таких случаев у меня...
Магия

Случайная встреча с животным как подсказка Судьбы

Если какое-то из этих 10 животных неожиданно попадается вам на глаза – это...
Магия

Взаимосвязь между случайностями и неслучайностями

Вы замечали в своей жизни, насколько случайности не случайны? Иногда так бывает...
Религия

Опубликовать сон

Гадать онлайн

Пройти тесты

Популярное

Весомые аргументы в пользу оптимизма
Влияние Луны в астрологии на жизнь человека