В заключение можно отметить, что физический аспект лежит в основе всего естествознания. Все развитие физики показывает, что мы непрерывно движемся от понимания отдельных, частных проблем ко все более общим законам природы.
Появление механики больших скоростей, релятивистской механики Эйнштейна, отнюдь не отменило классическую физику Ньютона. Последняя оказалась следствием механики Эйнштейна при условии, что скорости движения малы по сравнению со скоростью света с. В свою очередь, законы макроскопической механики являются следствием законов квантовой механики, управляющих микромиром.
Кстати, как отмечалось в [ ], на эмоционально-лингвистическом уровне можно в шутку сказать, что Ньютон внес «новый тон» (new tone) в описание динамических законов природы, или вообще построил целый «новый город» в современной для того времени физике (new town), оправдывая тем самым свою знаменитую фамилию Newton. А на то, что соответствующие фундаментальные законы природы вообще должны представлять собой нечто принципиально единое и незыблемое как некий монолит или один единственный краеугольный камень, или, короче, просто один камень (ein Stein), обратил должное внимание как раз Эйнштейн, опять-таки как бы оправдывая, словно по воле Проведения, свою столь же знаменитую фамилию Einstein.
В современной постнеклассической физике замечено, что с каждым новым шагом развития ее основные законы и теории как бы упрощаются, становятся фундаментальнее. Все большее число известных ранее законов и положений становится следствием более общих. При этом старые утверждения как часть новых можно вывести, опираясь на законы формальной логики. Например, по мере того как развивалась физика число фундаментальных взаимодействий и фундаментальных частиц уменьшилось. Почему это происходит? Сейчас мы этого достоверно не понимаем, но это исторический факт. И этот факт интуитивно еще в XIV веке был осознан английским монахом и философом У. Оккамом и получил название принципа «бритвы Оккама». Его утверждение гласит: «Чем ближе мы находимся к некоторой истине, тем проще оказываются законы, выражающие эту истину». Что можно трактовать и так: не множь сущностей без надобности, т.е. объясняй факты простейшим способом. Это одна из аксиом науки. Возможно, число законов природы конечно, но способы познания их, т.е. наука, остаются при этом бесконечными. Как сказал Р. Фейнман: «Может быть вещь проста только тогда, когда ее можно исчерпывающим образом охарактеризовать несколькими различными способами, еще не зная, что на самом деле ты говоришь об одном и том же». Кроме того, познанные законы природы показали, что установление рамок, границ, в пределах которых действует та или иная физическая модель, также является своего рода фундаментальным законом. Как сказал Л. Ландау: «Главное в физике - это умение пренебрегать». По существу все физические теории, основанные на предыдущих надежно установленных и объясненных наукой наблюдениях, сузили круг тех вопросов, которые можно задавать природе. Как справедливо указывалось в [ ]: «Осознание новых ограничений стало признаком фундаментальных теорий».
В этом смысле можно представить некоторую образную, взятую из кристаллографических представлений, классификацию фундаментальных физических теорий или механик. Как предложил А. Зельманов [ ], в пространстве трех одинаково нормированных (чтобы не нарушать симметрию куба) универсальных мировых констант - гравитационной константы G, 1/c и постоянной Планка h - все механики составляют характерный куб фундаментальных физических теорий, располагаясь в его вершинах с соответствующими координатами: М(0, 0, 0); GM(G, 0, 0); RM(0, 1/c, 0); QM(0, 0, h); RGM(G, 1/c, 0); RQM(0, 1/c, h); QGM(G, 0, h); QRGM(G, 1/c, h) (рис. ).
Такая классификация позволяет также прогнозировать дальнейшее развитие физики как науки. Классическая механика Ньютона (М) не содержит никаких универсальных физических мировых констант и является первой фундаментальной теорией. Гравитационной механикой (GM) Ньютона является вторая фундаментальная теория, она содержит ньютоновскую универсальную мировую гравитационную постоянную G. Третьей фундаментальной физической теорией стала электродинамика Максвелла и связанная с ней СТО Эйнштейна или релятивистская механика (RM), где в качестве универсальной мировой постоянной рассматривается скорость света с - предельно возможная скорость распространения физических воздействий. Четвертой фундаментальной физической теорией, основанной на постулатах Бора, является квантовая механика (QM), содержащая универсальную мировую константу постоянную Планка h как минимально возможный квант действия. Пятой фундаментальной физической теорией стала ОТО Эйнштейна, т.е. релятивистская гравитационная механика (RGM), содержащая универсальные мировые константы с и G и учитывающая искривление гравитационного поля при скоростях, близких к с. Шестой фундаментальной физической теорией считается релятивистская квантовая механика (RQM), содержащая универсальные мировые постоянные с и h. И, наконец, еще две, которые, вообще говоря, еще только должны быть. Седьмая - квантовая гравитационная механика (QGM). В ней отчасти уже оперирует квантовая электродинамика с универсальными постоянными h и G. Восьмой, с точки зрения такой классификации последней, должна стать искомая пока квантовая релятивистская механика (QRGM), содержащая все три мировые универсальные постоянные h, c и G.
Заметим, что, вероятно, в связи с трехмерностью описания нашего пространства нам требуются только три необходимые независимые универсальные константы (и в этом суть аналогии с кубом), в качестве которых могут выступать любые эквивалентные им параметры, непосредственно связанные с экспериментом, но непременно три.
Интересно, что все эти механики взаимосвязаны подобно атомам в узлах кубической кристаллической решетки. Так, классическая ньютоновская механика (М), которая еще игнорирует универсальную гравитационного взаимодействия, конечность возможной скорости распространения всех физических воздействий и принципиально дискретный квантовый характер любого физического действия, является предельным случаем гравитационной (GM), релятивистской (RM) и квантовой (QM) механик, т.е. соответственно получается из них при . Аналогичным образом гравитационная (GM), релятивистская (RM) и квантовая (QM) механики представляют собой соответствующие предельные случаи релятивистской гравитационной механики (RGM), релятивистской квантовой механики (RQM) и квантовой гравитационной механики (QGM). Очевидно, что релятивистская гравитационная механика (RGM), релятивистская квантовая механика (RQM) и квантовая гравитационная механика (QGM) являются предельными случаями квантовой релятивистской гравитационной механики (QRGM).
Подведем теперь краткий итог рассмотренных выше идей современной естественнонаучной картины мира на основе постнеклассических физических представлений или той физики, которая, по терминологии И. Пригожина, является физикой существующего. Отметим еще раз, что эта современная естественнонаучная картина отличается более фундаментальным уровнем рассмотрения явлений природы. Современные физические теории имеют дело с самыми основными понятиями, свойствами, состояниями природы, такими как время, пространство, масса, заряд, поле, вакуум и т.д. Создана теория атома, объясняющая стабильность атомов, периодичность свойств химических элементов, образование химических связей различных видов, объясняющих многочисленные и разнообразные физические и химические явления. Установлено строение атома и составляющих его частиц. В итоге сформулирована последовательная концепция атомистического строения материи, согласно которой все сущее состоит из 12 фундаментальных фермионов: 6 кварков различных ароматов и цветов и 6 лептонов с различными лептоновыми зарядами. Все многообразие природных явлений объясняется взаимопревращением этих частиц и их взаимодействием, которые сводятся к четырем видам фундаментальных взаимодействий - гравитационному, сильному, слабому и электромагнитному. Предполагается, что переносчиками взаимодействия являются частицы - фундаментальные бозоны, фотоны, гравитоны. Предпринимаются попытки объединить эти взаимодействия в одно. Важно также, что результаты исследования микромира дают возможность по-новому осмыслить процессы мегамира - рождение и эволюцию звезд, галактик, всей Вселенной. Считается, что в окрестностях точки Большого Взрыва при Т >1032 К эти все взаимодействия были объединены.
Другим существенным моментом является то, что современная естественнонаучная картина Мира основана на фундаментальном вероятностном принципе обобщения закономерностей. Этот принцип, вытекающий из квантовой физики, можно распространять и на гуманитарный подход к изучению мира, т.е. использовать физические модели, в том числе статистические физические модели, для описания не только природы, но и социума и общества в целом. При этом природа, общество, Вселенная рассматриваются в развитии, во взаимодействии их сущностей. Так ОТО связала пространство и время, квантовая теория доказала условность разделения вещества и поля, выяснилась тесная взаимосвязь таких свойств объектов природы, как симметрия-асимметрия, хаос и порядок, дискретность и континуальность. Заметим, что классическое естествознание на разных этапах развития картин мира рассматривало физические модели описания объектов как замкнутых систем с линейными зависимостями описывающих их параметров. В современной картине мира рассматриваются уже более распространенные в природе открытые системы, которые обмениваются с окружающей средой веществом, энергией, информацией. Для них характерны разнообразие, неустойчивости эволюции, нелинейные соотношения, процессы самоорганизации. Как отмечалось в главе 1.6, синергетический подход применим к объяснению самых разнообразных явлений в мире. Выяснилось, что нелинейность присуща не только чисто физическим процессам, но и большинству других - биологических, психологических, социальных, экологических, демографических, политических, экономических и т.д.
Поэтому в синергетической картине мира с единых позиций можно описать большинство глобальных процессов, используя нелинейность связей в различных моделях и системах. Использование методов и понятий синергетики позволяет прогнозировать эволюцию систем различной природы через процессы самоорганизации материи. Благодаря понятиям бифуркаций, возникновения новых упорядоченных структур из хаоса и возможности управления процессами через малые управляющие параметры можно более адекватно описывать природу самых разнообразных явлений, а в социально-экономических проблемах принимать правильные решения. Новые структуры возникают в точках бифуркации, когда еще не ясно, куда будет двигаться система, но тенденцию можно спрогнозировать или проанализировать выбором решений и путей развития. Можно сказать, что само научное знание развивается тоже как открытая система по законам самоорганизации. Важно также отметить, что постнеклассическое естествознание рассматривает мир как процесс и в синергетической картине он представляется глобальной иерархически организованной самоорганизующейся системой.
Окружающий человека мир, безграничный в пространстве и времени, дает грандиозную картину мироздания, в которой все связано со всем. Жизнь Природы, Земли, Вселенной, физическая и духовная жизнь человека, жизнь и эволюция общества - все подчинено единым фундаментальным законам природы. Человек всегда пытался определить эту глобальную взаимосвязь всего со всеми разными способами и понять свое место, роль и предназначение в мире. Развитие науки, и прежде всего физики, как способа познания позволило построить некие модели - системы понимания и описания картины мира на основе существующего знания. На разных этапах развития человечества были механическая, электромагнитная, квантово-механическая, синергетическая картины мира. Естественно, что в целом это отражает лишь бесконечный процесс познания, приближения к единой эволюционной картине Мира и обусловливает принципиальную незавершенность научной картины мира. Современная наука пытается переосмыслить познанное, преодолевая необъясненные парадоксы и стереотипы мышления, создавая новую мировоззренческую парадигму.
В свое время представление о мире на основе классической механики, создавшее рациональный метод его объяснения, позволило объяснить и предсказать его развитие, но отделило человека и Бога от существующего мира. Лапласовский детерминизм тем самым выделил естественные науки из общего холистического понимания всего сущего. Физика отделилась от гуманитарного знания, последующее проникновение в природу вещей на основе естественных наук на самом деле позволило лишь увидеть глубину, сложность и неопознанность мира, хотя, конечно, это не означает прекращения попыток познать его!
В целом же оказалось, что на фундаментальном уровне природа едина и все грани в ней весьма условны и только лишь отражают последовательное приближение коллективного разума человечества к познанию мира. Об этом писал Н. Моисеев [ ]: «Очень многое нам не ясно и скрыто от нашего взора. Тем не менее, сейчас перед нами развертывается грандиозная гипотетическая картина процесса самоорганизации материи от Большого Взрыва до настоящего времени, когда материя познает себя, когда ей присущ Разум, способный обеспечить ее целенаправленное развитие». Это единство всего сущего и его различных проявлений должно обусловливать и сближение, взаимопроникновение естественнонаучного и гуманитарного подходов к познанию мира. Соответственно при этом меняется также и роль исследователя в этом процессе познания: он сам становится неотъемлемой частью создаваемой им картины мира, которая вследствие этого по существу перестает быть только естественнонаучной. Поэтому возрастает роль нелогической компоненты мышления в познании, влияние интуитивных, близких художественному творчеству приемов в познании Истины. Правильнее считать, что современная картина мира должна строиться на базе парадигмы естественной и гуманитарной культур, целостного непредвзятого взгляда на мир. Результатом такого подхода может быть вывод, что наука есть основа взаимопонимания, искусство - основа мировосприятия, а их сумма есть основа гармонического восприятия всего мира, основа человеческого мироощущения. В представления современной естественнонаучной картины мира органично вписываются также идеи В. Вернадского о ноосфере как симбиозе человечества и остальной природы, обеспечивающей их коэволюцию, взаимодействие и способ существования.
Можно надеяться, что новый целостный взгляд на мир, общество, жизнь в рамках современной концепции естествознания позволит человечеству на пороге XXI века разумно решать глобальные проблемы демографического, экологического, политического и социально-экономического характера. Как сказал А. Эйнштейн, «Самое удивительное в природе это то, что можем ее понять» и «наша первейшая задача - научиться слушать природу, чтобы понять ее язык» ( И. Тамм), а «то, что мы видим, зависит от того, куда мы смотрим» ( Е. Лец).
Кстати, как отмечалось в [ ], на эмоционально-лингвистическом уровне можно в шутку сказать, что Ньютон внес «новый тон» (new tone) в описание динамических законов природы, или вообще построил целый «новый город» в современной для того времени физике (new town), оправдывая тем самым свою знаменитую фамилию Newton. А на то, что соответствующие фундаментальные законы природы вообще должны представлять собой нечто принципиально единое и незыблемое как некий монолит или один единственный краеугольный камень, или, короче, просто один камень (ein Stein), обратил должное внимание как раз Эйнштейн, опять-таки как бы оправдывая, словно по воле Проведения, свою столь же знаменитую фамилию Einstein.
В современной постнеклассической физике замечено, что с каждым новым шагом развития ее основные законы и теории как бы упрощаются, становятся фундаментальнее. Все большее число известных ранее законов и положений становится следствием более общих. При этом старые утверждения как часть новых можно вывести, опираясь на законы формальной логики. Например, по мере того как развивалась физика число фундаментальных взаимодействий и фундаментальных частиц уменьшилось. Почему это происходит? Сейчас мы этого достоверно не понимаем, но это исторический факт. И этот факт интуитивно еще в XIV веке был осознан английским монахом и философом У. Оккамом и получил название принципа «бритвы Оккама». Его утверждение гласит: «Чем ближе мы находимся к некоторой истине, тем проще оказываются законы, выражающие эту истину». Что можно трактовать и так: не множь сущностей без надобности, т.е. объясняй факты простейшим способом. Это одна из аксиом науки. Возможно, число законов природы конечно, но способы познания их, т.е. наука, остаются при этом бесконечными. Как сказал Р. Фейнман: «Может быть вещь проста только тогда, когда ее можно исчерпывающим образом охарактеризовать несколькими различными способами, еще не зная, что на самом деле ты говоришь об одном и том же». Кроме того, познанные законы природы показали, что установление рамок, границ, в пределах которых действует та или иная физическая модель, также является своего рода фундаментальным законом. Как сказал Л. Ландау: «Главное в физике - это умение пренебрегать». По существу все физические теории, основанные на предыдущих надежно установленных и объясненных наукой наблюдениях, сузили круг тех вопросов, которые можно задавать природе. Как справедливо указывалось в [ ]: «Осознание новых ограничений стало признаком фундаментальных теорий».
В этом смысле можно представить некоторую образную, взятую из кристаллографических представлений, классификацию фундаментальных физических теорий или механик. Как предложил А. Зельманов [ ], в пространстве трех одинаково нормированных (чтобы не нарушать симметрию куба) универсальных мировых констант - гравитационной константы G, 1/c и постоянной Планка h - все механики составляют характерный куб фундаментальных физических теорий, располагаясь в его вершинах с соответствующими координатами: М(0, 0, 0); GM(G, 0, 0); RM(0, 1/c, 0); QM(0, 0, h); RGM(G, 1/c, 0); RQM(0, 1/c, h); QGM(G, 0, h); QRGM(G, 1/c, h) (рис. ).
Такая классификация позволяет также прогнозировать дальнейшее развитие физики как науки. Классическая механика Ньютона (М) не содержит никаких универсальных физических мировых констант и является первой фундаментальной теорией. Гравитационной механикой (GM) Ньютона является вторая фундаментальная теория, она содержит ньютоновскую универсальную мировую гравитационную постоянную G. Третьей фундаментальной физической теорией стала электродинамика Максвелла и связанная с ней СТО Эйнштейна или релятивистская механика (RM), где в качестве универсальной мировой постоянной рассматривается скорость света с - предельно возможная скорость распространения физических воздействий. Четвертой фундаментальной физической теорией, основанной на постулатах Бора, является квантовая механика (QM), содержащая универсальную мировую константу постоянную Планка h как минимально возможный квант действия. Пятой фундаментальной физической теорией стала ОТО Эйнштейна, т.е. релятивистская гравитационная механика (RGM), содержащая универсальные мировые константы с и G и учитывающая искривление гравитационного поля при скоростях, близких к с. Шестой фундаментальной физической теорией считается релятивистская квантовая механика (RQM), содержащая универсальные мировые постоянные с и h. И, наконец, еще две, которые, вообще говоря, еще только должны быть. Седьмая - квантовая гравитационная механика (QGM). В ней отчасти уже оперирует квантовая электродинамика с универсальными постоянными h и G. Восьмой, с точки зрения такой классификации последней, должна стать искомая пока квантовая релятивистская механика (QRGM), содержащая все три мировые универсальные постоянные h, c и G.
Заметим, что, вероятно, в связи с трехмерностью описания нашего пространства нам требуются только три необходимые независимые универсальные константы (и в этом суть аналогии с кубом), в качестве которых могут выступать любые эквивалентные им параметры, непосредственно связанные с экспериментом, но непременно три.
Интересно, что все эти механики взаимосвязаны подобно атомам в узлах кубической кристаллической решетки. Так, классическая ньютоновская механика (М), которая еще игнорирует универсальную гравитационного взаимодействия, конечность возможной скорости распространения всех физических воздействий и принципиально дискретный квантовый характер любого физического действия, является предельным случаем гравитационной (GM), релятивистской (RM) и квантовой (QM) механик, т.е. соответственно получается из них при . Аналогичным образом гравитационная (GM), релятивистская (RM) и квантовая (QM) механики представляют собой соответствующие предельные случаи релятивистской гравитационной механики (RGM), релятивистской квантовой механики (RQM) и квантовой гравитационной механики (QGM). Очевидно, что релятивистская гравитационная механика (RGM), релятивистская квантовая механика (RQM) и квантовая гравитационная механика (QGM) являются предельными случаями квантовой релятивистской гравитационной механики (QRGM).
Подведем теперь краткий итог рассмотренных выше идей современной естественнонаучной картины мира на основе постнеклассических физических представлений или той физики, которая, по терминологии И. Пригожина, является физикой существующего. Отметим еще раз, что эта современная естественнонаучная картина отличается более фундаментальным уровнем рассмотрения явлений природы. Современные физические теории имеют дело с самыми основными понятиями, свойствами, состояниями природы, такими как время, пространство, масса, заряд, поле, вакуум и т.д. Создана теория атома, объясняющая стабильность атомов, периодичность свойств химических элементов, образование химических связей различных видов, объясняющих многочисленные и разнообразные физические и химические явления. Установлено строение атома и составляющих его частиц. В итоге сформулирована последовательная концепция атомистического строения материи, согласно которой все сущее состоит из 12 фундаментальных фермионов: 6 кварков различных ароматов и цветов и 6 лептонов с различными лептоновыми зарядами. Все многообразие природных явлений объясняется взаимопревращением этих частиц и их взаимодействием, которые сводятся к четырем видам фундаментальных взаимодействий - гравитационному, сильному, слабому и электромагнитному. Предполагается, что переносчиками взаимодействия являются частицы - фундаментальные бозоны, фотоны, гравитоны. Предпринимаются попытки объединить эти взаимодействия в одно. Важно также, что результаты исследования микромира дают возможность по-новому осмыслить процессы мегамира - рождение и эволюцию звезд, галактик, всей Вселенной. Считается, что в окрестностях точки Большого Взрыва при Т >1032 К эти все взаимодействия были объединены.
Другим существенным моментом является то, что современная естественнонаучная картина Мира основана на фундаментальном вероятностном принципе обобщения закономерностей. Этот принцип, вытекающий из квантовой физики, можно распространять и на гуманитарный подход к изучению мира, т.е. использовать физические модели, в том числе статистические физические модели, для описания не только природы, но и социума и общества в целом. При этом природа, общество, Вселенная рассматриваются в развитии, во взаимодействии их сущностей. Так ОТО связала пространство и время, квантовая теория доказала условность разделения вещества и поля, выяснилась тесная взаимосвязь таких свойств объектов природы, как симметрия-асимметрия, хаос и порядок, дискретность и континуальность. Заметим, что классическое естествознание на разных этапах развития картин мира рассматривало физические модели описания объектов как замкнутых систем с линейными зависимостями описывающих их параметров. В современной картине мира рассматриваются уже более распространенные в природе открытые системы, которые обмениваются с окружающей средой веществом, энергией, информацией. Для них характерны разнообразие, неустойчивости эволюции, нелинейные соотношения, процессы самоорганизации. Как отмечалось в главе 1.6, синергетический подход применим к объяснению самых разнообразных явлений в мире. Выяснилось, что нелинейность присуща не только чисто физическим процессам, но и большинству других - биологических, психологических, социальных, экологических, демографических, политических, экономических и т.д.
Поэтому в синергетической картине мира с единых позиций можно описать большинство глобальных процессов, используя нелинейность связей в различных моделях и системах. Использование методов и понятий синергетики позволяет прогнозировать эволюцию систем различной природы через процессы самоорганизации материи. Благодаря понятиям бифуркаций, возникновения новых упорядоченных структур из хаоса и возможности управления процессами через малые управляющие параметры можно более адекватно описывать природу самых разнообразных явлений, а в социально-экономических проблемах принимать правильные решения. Новые структуры возникают в точках бифуркации, когда еще не ясно, куда будет двигаться система, но тенденцию можно спрогнозировать или проанализировать выбором решений и путей развития. Можно сказать, что само научное знание развивается тоже как открытая система по законам самоорганизации. Важно также отметить, что постнеклассическое естествознание рассматривает мир как процесс и в синергетической картине он представляется глобальной иерархически организованной самоорганизующейся системой.
Окружающий человека мир, безграничный в пространстве и времени, дает грандиозную картину мироздания, в которой все связано со всем. Жизнь Природы, Земли, Вселенной, физическая и духовная жизнь человека, жизнь и эволюция общества - все подчинено единым фундаментальным законам природы. Человек всегда пытался определить эту глобальную взаимосвязь всего со всеми разными способами и понять свое место, роль и предназначение в мире. Развитие науки, и прежде всего физики, как способа познания позволило построить некие модели - системы понимания и описания картины мира на основе существующего знания. На разных этапах развития человечества были механическая, электромагнитная, квантово-механическая, синергетическая картины мира. Естественно, что в целом это отражает лишь бесконечный процесс познания, приближения к единой эволюционной картине Мира и обусловливает принципиальную незавершенность научной картины мира. Современная наука пытается переосмыслить познанное, преодолевая необъясненные парадоксы и стереотипы мышления, создавая новую мировоззренческую парадигму.
В свое время представление о мире на основе классической механики, создавшее рациональный метод его объяснения, позволило объяснить и предсказать его развитие, но отделило человека и Бога от существующего мира. Лапласовский детерминизм тем самым выделил естественные науки из общего холистического понимания всего сущего. Физика отделилась от гуманитарного знания, последующее проникновение в природу вещей на основе естественных наук на самом деле позволило лишь увидеть глубину, сложность и неопознанность мира, хотя, конечно, это не означает прекращения попыток познать его!
В целом же оказалось, что на фундаментальном уровне природа едина и все грани в ней весьма условны и только лишь отражают последовательное приближение коллективного разума человечества к познанию мира. Об этом писал Н. Моисеев [ ]: «Очень многое нам не ясно и скрыто от нашего взора. Тем не менее, сейчас перед нами развертывается грандиозная гипотетическая картина процесса самоорганизации материи от Большого Взрыва до настоящего времени, когда материя познает себя, когда ей присущ Разум, способный обеспечить ее целенаправленное развитие». Это единство всего сущего и его различных проявлений должно обусловливать и сближение, взаимопроникновение естественнонаучного и гуманитарного подходов к познанию мира. Соответственно при этом меняется также и роль исследователя в этом процессе познания: он сам становится неотъемлемой частью создаваемой им картины мира, которая вследствие этого по существу перестает быть только естественнонаучной. Поэтому возрастает роль нелогической компоненты мышления в познании, влияние интуитивных, близких художественному творчеству приемов в познании Истины. Правильнее считать, что современная картина мира должна строиться на базе парадигмы естественной и гуманитарной культур, целостного непредвзятого взгляда на мир. Результатом такого подхода может быть вывод, что наука есть основа взаимопонимания, искусство - основа мировосприятия, а их сумма есть основа гармонического восприятия всего мира, основа человеческого мироощущения. В представления современной естественнонаучной картины мира органично вписываются также идеи В. Вернадского о ноосфере как симбиозе человечества и остальной природы, обеспечивающей их коэволюцию, взаимодействие и способ существования.
Можно надеяться, что новый целостный взгляд на мир, общество, жизнь в рамках современной концепции естествознания позволит человечеству на пороге XXI века разумно решать глобальные проблемы демографического, экологического, политического и социально-экономического характера. Как сказал А. Эйнштейн, «Самое удивительное в природе это то, что можем ее понять» и «наша первейшая задача - научиться слушать природу, чтобы понять ее язык» ( И. Тамм), а «то, что мы видим, зависит от того, куда мы смотрим» ( Е. Лец).
Обсуждения Современная естественнонаучная картина мира с точки зрения физики