Точность измерения расстояния

Точность измерения расстояния между и внутри молекул улучшилась в десять раз - до 1 нанометра, благодаря новому методу микроскопических исследований, разработанному в лаборатории нобелевского лауреата Стивена Чу (Steven Chu) в университете Калифорнии в Беркли, рассказал в интервью РИА Новости ведущий автор разработки Александрос Пестинидис (Alexandros Pertsinidis).
Точность измерения расстояния
Прогресс в "обычной", оптической микроскопии связан необходимостью преодоления так называемого дифракционного предела. В оптическом диапазоне не удается получить изображения объектов размером менее 200 нанометров из-за того, что этот размер меньше длины волны, и свет просто "огибает" эти предметы. Один из путей измерения расстояний менее дифракционного предела предусматривает измерение расстояний между флюоресцентными молекулами-метками, которые прикрепляют к молекулам, расстояния между которыми необходимо выяснить. В этом случае ученые получают два изображения, полученные в результате подсветки флюоресцентных меток разного цвета. Сравнение двух "картинок" позволяет измерять дистанции с точностью от 5 до 20 нанометров, но было неясно, может ли точность быть увеличена.

Пестинидис и его коллеги отследили главную проблему с маленькими пространственными искажениями в фотоэлектрических детекторах - приборах с обратной зарядовой связью (ПЗС), которые используются в микроскопии. "Мы показали, что разные пикселы ПЗС-матрицы выдают разные электрические сигналы при одинаковом количестве падающего света. Это приводит к тому, что отдельные молекулы, которые снимает камера, отображаются на местах, отличающихся от их реального положения на образце. Эти ошибки локализации являлись главным ограничением для обычной микроскопии, и должны были быть устранены, чтобы достичь разрешения 1 нанометр", - сказал Пестинидис.

Ему и его коллегам удалось добиться, что микроскоп и вся экспериментальная установка остаются очень устойчивыми, что дало и возможность получать резкие снимки отдельных молекул. Точность измерения расстояния между молекулами в эксперименте, результаты которого были опубликованы в журнале Nature, составила 0,77 нанометра, что примерно в семь раз больше размера отдельного атома.

"Эта технология поможет понять устройство сложных молекулярных машин, которые работают в живых клетках", - сказал собеседник агентства, отвечая на вопрос о возможных применениях этой разработки.

"Я сам хотел бы изучить, как различные типы раковых клеток реагируют на повреждение ДНК во время химио- и радиотерапии. Я надеюсь увидеть, как отдельные молекулы располагаются в месте повреждений", - добавил он. По словам ученого, подобные эксперименты позволят создать более эффективные методы лечения рака.

Кроме того, микроскопия с нанометровым разрешением позволит понять, как на молекулярном уровне взаимодействуют синапсы - соединения между отдельными нейронами - в мозге. "Это очень важно для понимания того, как работает мозг, как работает память", - заключил исследователь.

Этот метод также должен вдохновить продвижение в нанотехнологиях и астрономических измерениях, которые также зависят от цифровых камер.

По теме Точность измерения расстояния

Астрономические расстояния

Необходимость пересмотра шкалы астрономических расстояний, выявленная канадскими...
Журнал

Бактерии, передающие энергию на большие расстояния

Ученые обнаружили новый механизм передачи сигнала, работающий в колониях...
Журнал

Измерения вселенной

Их называют исчадием ада, их изучают закрытые научные институты с помощью...
Журнал

Новые измерения

Один из самых крупных в мире центров по изучению происхождения создал гигантский...
Журнал

Рекорд точности измерения времени

Физики Национального института стандартов и технологий (NIST) в США поставили...
Журнал

Точность и гаромония - высшее проявление магии Космоса

Путь для современного человека к истокам знаний не просто. А вместе с тем, без...
Магия

Опубликовать сон

Гадать онлайн

Пройти тесты

Популярное

Весомые аргументы в пользу оптимизма
Влияние Луны в астрологии на жизнь человека