«Эти открытия могут привести к развитию дешевых материалов многофункционального применения, например, для источников энергии, методов переработки мусора и изготовления дешевых в производстве ускорителей реакции для химической промышленности.
От которой особенно зависят промышленно развитые государства», - говорят ведущие исследователи А. Велфорд Кастлемен Юниор, почетный председатель Eberly College и Ивэн Паг, профессор факультета химии и физики в пресс-релизе.
Ученые продемонстрировали, что идентифицированные на сегодняшний день атомы, которые поддались имитации, можно предсказать с помощью периодической системы элементов. Группа исследователей использовала передовую экспериментальную технику и теории, чтобы выяснить механизм действия этого неожиданного открытия.
«Мы получили совершенно новые перспективы периодической системы элементов», - говорит Кастлемен.
Результаты исследований опубликованы в Интернете Академией Наук 29 декабря.
Кастлемен и его группа использовали технику, известную как фотоэлектронная спектроскопия, для изучения сходства между моноксидом титана и никеля, моноксида циркония и палладия и карбида фольфрама и платины.
«Фотоэлектронная спектроскопия замеряет энергию, необходимую для отделения электронов от атомов и молекул, находящихся в разных состояния, и одновременно делает дигитальный снимок отделения электрона». - говорит Кастлеман.
«Этот метод позволяет нам определить энергию связи и одновременно наблюдать орбиту - местонахождение электронов, где они с определенной вероятностью находятся до момента отделения».
Они обнаружили, что количество энергии, необходимое для отделения электрона молекулы моноксида титана абсолютно равно отделению электрона атома никеля. То же самое происходит и с моноксидом циркония и палладием, и карбидом вольфрама и платиной. Точное количество этой энергии - это существенный фактор для химического и физического состояния вещества.
Поэтому кластеры суператомов молекул моноксида титана, моноксида циркония и карбида вольфрама демонстрируют некоторые свойства атомов элементов - никеля, палладия и платины соответственно.
Кастлемен говорит, что такое подобие между атомами и суператомами может сэкономить большое количество денег.
«Например, платина используется почти во всех катализаторах, встроенных в автомобили, но она очень дорогая», - говорит Кастлеман.
«Карбид вольфрама, имитирующий платину - дешевый. Можно сэкономить много денег, если производители катализаторов будут в состоянии использовать карбид вольфрама. Также и палладий используется в процессах сжигания, но может имитироваться моноксидом циркония, который дешевле в 500 раз. Наши новые открытия захватывающи как с научной точки зрения, так и с позиции практического применения».
Кастлемен говорит, что не знает, действует ли этот принцип во всей периодической системе элементов.
В будущем планируется следующий шаг, - исследовать химическое поведение веществ, состоящих из суператомов, не отличается ли оно от их партнеров, состоящих из чистых элементов.
Ученые продемонстрировали, что идентифицированные на сегодняшний день атомы, которые поддались имитации, можно предсказать с помощью периодической системы элементов. Группа исследователей использовала передовую экспериментальную технику и теории, чтобы выяснить механизм действия этого неожиданного открытия.
«Мы получили совершенно новые перспективы периодической системы элементов», - говорит Кастлемен.
Результаты исследований опубликованы в Интернете Академией Наук 29 декабря.
Кастлемен и его группа использовали технику, известную как фотоэлектронная спектроскопия, для изучения сходства между моноксидом титана и никеля, моноксида циркония и палладия и карбида фольфрама и платины.
«Фотоэлектронная спектроскопия замеряет энергию, необходимую для отделения электронов от атомов и молекул, находящихся в разных состояния, и одновременно делает дигитальный снимок отделения электрона». - говорит Кастлеман.
«Этот метод позволяет нам определить энергию связи и одновременно наблюдать орбиту - местонахождение электронов, где они с определенной вероятностью находятся до момента отделения».
Они обнаружили, что количество энергии, необходимое для отделения электрона молекулы моноксида титана абсолютно равно отделению электрона атома никеля. То же самое происходит и с моноксидом циркония и палладием, и карбидом вольфрама и платиной. Точное количество этой энергии - это существенный фактор для химического и физического состояния вещества.
Поэтому кластеры суператомов молекул моноксида титана, моноксида циркония и карбида вольфрама демонстрируют некоторые свойства атомов элементов - никеля, палладия и платины соответственно.
Кастлемен говорит, что такое подобие между атомами и суператомами может сэкономить большое количество денег.
«Например, платина используется почти во всех катализаторах, встроенных в автомобили, но она очень дорогая», - говорит Кастлеман.
«Карбид вольфрама, имитирующий платину - дешевый. Можно сэкономить много денег, если производители катализаторов будут в состоянии использовать карбид вольфрама. Также и палладий используется в процессах сжигания, но может имитироваться моноксидом циркония, который дешевле в 500 раз. Наши новые открытия захватывающи как с научной точки зрения, так и с позиции практического применения».
Кастлемен говорит, что не знает, действует ли этот принцип во всей периодической системе элементов.
В будущем планируется следующий шаг, - исследовать химическое поведение веществ, состоящих из суператомов, не отличается ли оно от их партнеров, состоящих из чистых элементов.
Обсуждения Суператомы